

Colorado CTE Course – Scope and Sequence

Course Name IT/CS 3
(Information Technology/Computer Science
Level 3)

Course Details 1.0
Course = 0.50 Carnegie Unit Credit

Course Description In this level 3 scope and sequence of the IT/Computer Science curriculum, students delve into more abstract and exploratory concepts.
They transition from block-based programming to text-based languages like Python, focusing increasingly on programming in various
projects. Introduction to advanced concepts such as recursion and object-oriented programming enriches their understanding.
Emphasis is placed on fostering autonomy, encouraging students to seek challenges and support for a fulfilling learning journey. The
goal is to nurture a mindset where students view themselves as creators rather than mere consumers of technology.

The items listed above provide an overview of the essential knowledge and skills to be taught in computer science modules or courses
at each grade level and are not intended to be exhaustive. While also important, we have purposefully omitted skills related to utilizing
technology effectively and responsibly (e.g., digital literacy, basic computing, keyboarding, creating
documents/spreadsheets/presentations, digital citizenship, and using technology to collaborate or access online content), as these skills
should be incorporated into all classes. Additionally, the number of items included in each domain is not indicative of priority or
significance.

All aspects of this scope and sequence is meant to be exploratory.

Note: This is a suggested scope and sequence for the course content. The content will work with any textbook or instructional resource. If locally adapted,
make sure all essential knowledge and skills are covered.

SCED Identification #

 Schedule calculation based on 60 calendar days of a 90-day semester. Scope and sequence allow for additional time for
guest speakers, student presentations, field trips, remediation, or other content topics.

All courses taught in an approved CTE program must include Essential Skills embedded into the course content. The Essential Skills Framework for this course can be found at
https://www.cde.state.co.us/standardsandinstruction/essentialskills

Instructional Unit Topic

Suggested Length of

Instruction

CTE or Academic

Standard Alignment

Competency /

Performance Indicator

Outcome / Measurement

CTSO

Integration

https://www.cde.state.co.us/standardsandinstruction/essentialskills

Computational Thinking

1. Decomposition
2. Pattern

Recognition.
3. Abstraction.

decomposed
problem.

4. Algorithmic
Thinking.

5. Applied Coding &
Robotics

Week 1-2: Introduction
to Computational
Thinking

● Overview of
computational
thinking
concepts:
Decomposition,
Pattern
Recognition,
Abstraction,
Algorithmic
Thinking.

● Activities and
exercises to
introduce each
concept, such
as problem-
solving
challenges and
group
discussions.

● Hands-on
practice with
decomposing
problems into
smaller parts,
recognizing
patterns, and
abstracting
details.

● 2-AP-10 Use
flowcharts
and/or
pseudocode to
address
complex
problems as
algorithms.
(P4.4, P4.1)

● 2-AP-11 Create
clearly named
variables that
represent
different data
types and
perform
operations on
their values.
(P5.1, P5.2)

● 2-AP-12 Design

and iteratively
develop
programs that
combine
control
structures,
including
nested loops
and compound
conditionals.
(P5.1, P5.2)

● 2-AP-13

Decompose
problems and

 Computational Thinking

Performance Indicators:

 Decomposition:
● Identify and break

down complex
problems into
smaller,
manageable tasks.

● Organize the
decomposition
process into
sequential steps.

● Demonstrate the
ability to identify
the relationships
between the
smaller tasks and
the larger problem.

 Pattern Recognition:
● Recognize recurring

patterns or
similarities within
data or problems.

● Analyze patterns to
derive insights or
make predictions.

● Apply pattern
recognition skills
across various
contexts, such as in
data analysis or
algorithm design.

 Abstraction:

Focus on text-based
coding, app and game
development, and an
introduction to advanced
robotics concepts and
design thinking challenges.
Implement spaced and
interleaved practices to
tackle coding and robotics
problems. Continue with
explicit teaching strategies,
ensuring students
understand the relevance
and application of their
projects in real-world
contexts.

TSA

Week 3-4: Applied
Coding & Robotics

● Introduction to
coding concepts
using block-
based
programming
languages (e.g.,
Scratch).

● Activities to
create simple
programs that
apply
computational
thinking
concepts.

● Introduction to
robotics and
hands-on
activities with
programmable
robots to
reinforce coding
skills and
problem-solving.

Week 5-6: Advanced
Programming Skills

● Introduction to
flowcharts and
pseudocode for

subproblems
into parts to
facilitate the
design,
implementatio
n, and review
of programs.
(P3.2)

● 2-AP-14 Create

procedures
with
parameters to
organize code
and make it
easier to reuse.
(P4.1, P4.3)

● 2-AP-15 Seek

and
incorporate
feedback from
team members
and users to
refine a
solution that
meets user
needs. (P2.3,
P1.1)

● 2-AP-16

Incorporate
existing code,
media, and
libraries into
original

● Identify and focus
on the essential
details while
ignoring irrelevant
information.

● Represent complex
systems or concepts
using simplified
models or diagrams.

● Utilize abstraction
to develop
generalized
solutions applicable
to a range of
problems.

 Algorithmic Thinking:
● Develop step-by-

step procedures or
algorithms to solve
problems.

● Evaluate and refine
algorithms for
efficiency and
effectiveness.

● Apply algorithmic
thinking to develop
solutions in various
domains, including
coding, robotics,
and data analysis.

 Applied Coding & Robotics:
● Utilize coding

concepts and
programming
languages to
implement solutions

algorithm
design.

● Activities to
create
algorithms using
flowcharts and
pseudocode to
solve complex
problems.

● Introduction to
variables, data
types, and
operations in
programming
languages.

● Practice
designing and
developing
programs that
combine control
structures,
including nested
loops and
compound
conditions.

Week 7-8: Computing
Systems and Hardware

● Exploration of
computing
devices and

programs, and
give
attribution.
(P4.2, P5.2,
P7.3)

● 2-AP-17

Systematically
test and refine
programs using
a range of test
cases. (P6.1)

● 2-AP-18

Distribute tasks
and maintain a
project
timeline when
collaboratively
developing
computational
artifacts. (P2.2)

● 2-AP-19
Document
programs in
order to make
them easier to
follow, test,
and debug.
(P7.2)

● Computing
Systems

● 2-CS-01
Recommend
improvements
to the design of

to real-world
problems.

● Design and program
robots to perform
specific tasks or
achieve objectives.

● Test, debug, and
iterate on code and
robotics solutions to
optimize
performance and
functionality.

their
components.

● Activities to
analyze how
users interact
with computing
devices and
recommend
improvements to
their design.

● Design projects
that combine
hardware and
software
components to
collect and
exchange data.

● Introduction to
troubleshooting
and fixing
problems with
computing
devices and
components.

computing
devices, based
on an analysis
of how users
interact with
the devices.

● 2-CS-02 Design
projects that
combine
hardware and
software
components to
collect and
exchange data

● 2-CS-03
Systematically
identify and fix
problems with
computing
devices and
their
components.

Computing and
Programming.

(Demonstrate dispositions
compliant with open-
ended problem-solving
and programming

4-6 weeks for unit

Week 1: Introduction to
Computing and
Programming:

● 2-CS-01

Recommend
improvements
to the design of
computing
devices, based

● Write programs using text-
based programming
languages.

● Locate and debug errors in a
program.

● Read a program and
translate it into English.

Students will exhibit
dispositions-compliant
with open-ended problem-
solving and programming,
showcasing their comfort
with complexity,
persistence,

TSA

(e.g., comfort with
complexity, persistence,
brainstorming,
adaptability, patience,
propensity to tinker,
creativity, accepting
challenge)

● Overview of
computing
concepts and
programming
fundamentals.

● Introduction to
the importance
of open-ended
problem-solving
and
programming
dispositions.

● Activities and
discussions to
introduce
dispositions
such as comfort
with complexity,
persistence,
creativity, and
adaptability.

Week 2-3: Designing
and Implementing
Projects

● Introduction to
project-based
learning and its
application to
computing and
programming.

● Design projects
that combine

on an analysis
of how users
interact with
the devices.

● 2-CS-02 Design
projects that
combine
hardware and
software
components to
collect and
exchange data

● 2-CS-03
Systematically
identify and fix
problems with
computing
devices and
their
components.

Explain how a particular
program functions.

● Design, code, test, and
execute a program
corresponding to a set of
specifications.

● Design, develop, publish,
and present products (e.g.,
web pages, mobile apps,
animations)

● to demonstrate and
communicate curriculum
concepts.

Performance Indicator
Comfort with Complexity:

● Engage with
complex problems
without feeling
overwhelmed.

● Demonstrate
confidence in
tackling challenging
tasks or projects.

● Seek out
opportunities to
explore and learn
from complex
scenarios.

 Persistence:
● Demonstrate

perseverance when
faced with obstacles
or setbacks.

brainstorming,
adaptability, patience,
propensity to tinker,
creativity, and acceptance
of challenges.

Measurable Outcome:

After the level 3
Computing Practice and
Programming curriculum,
students will design,
develop, and execute a
text-based program that
meets specified criteria,
debug any errors
encountered during the
coding process, and
effectively communicate
the functionality of their
program in English.

Performance Indicators:
Comfort with Complexity:
Students will successfully
engage with a complex
programming problem,
demonstrating confidence
and curiosity in tackling
challenging tasks.
Students will actively seek
out opportunities to
explore and learn from
complex scenarios

hardware (such
as
microcontrollers
or sensors) and
software
(programming
languages or
block-based
coding
platforms)
components to
collect and
exchange data.

● Hands-on
activities to
develop and
implement
projects,
focusing on
problem-solving,
creativity, and
adaptability.

Week 4: Analyzing User
Interaction and Device
Design

● Introduction to
the design of
computing
devices and
user interaction
principles.

● Activities to
analyze how

● Continuously work
towards solutions
even when progress
is slow.

● Show resilience in
the face of failure
and use it as an
opportunity for
learning and
growth.

 Brainstorming:
● Generate a variety

of ideas and
approaches when
problem-solving.

● Encourage
collaboration and
open discussion to
explore different
perspectives.

● Utilize
brainstorming
techniques to
generate innovative
solutions to
problems.

 Adaptability:
● Adjust strategies

and approaches
based on new
information or
changing
circumstances.

● Embrace flexibility
in problem-solving
methods and

encountered during the
programming process.

Persistence:
Students will demonstrate
perseverance when faced
with obstacles or setbacks
during the programming
process, continuously
working towards solutions
even when progress is
slow.

Students will exhibit
resilience in the face of
programming errors or
failures, using them as
opportunities for learning
and growth.
Brainstorming:

Students will generate a
variety of ideas and
approaches to solve
programming problems,
encouraging collaboration
and open discussion to
explore different
perspectives.

Students will utilize
brainstorming techniques
to generate innovative
solutions to programming
challenges encountered.

users interact
with computing
devices and
recommend
improvements to
their design.

● Discussions and
case studies
exploring real-
world examples
of device design
and user
experience
considerations.

Week 5:
Troubleshooting and
Problem-Solving

● Introduction to
systematic
problem-solving
strategies and
troubleshooting
techniques.

● Activities to
identify and fix
problems with
computing
devices and
their
components.

● Hands-on
troubleshooting
exercises and

programming
techniques.

● Demonstrate the
ability to adapt to
different tools,
languages, or
platforms as
needed.

 Patience:
● Exhibit patience

when debugging
code or
troubleshooting
technical issues.

● Take the time to
thoroughly
understand
problems before
attempting
solutions.

● Recognize that
mastery takes time
and effort, and
demonstrate
patience in the
learning process.

 Propensity to Tinker:

● Show curiosity and
a willingness to
experiment with
technology and
programming.

● Explore different
features, settings,
and functionalities

Adaptability:

Students will adjust
programming strategies
and approaches based on
new information or
changing circumstances
encountered during the
coding process.

Students will demonstrate
flexibility in problem-
solving methods and
programming techniques,
adapting to different tools,
languages, or platforms as
needed.

Patience:
Students will exhibit
patience when debugging
code or troubleshooting
technical issues, taking the
time to thoroughly
understand problems
before attempting
solutions.

Students will recognize
that mastering
programming concepts
takes time and effort,
demonstrating patience in
the learning process.
Propensity to Tinker:

simulations to
practice
systematic
problem-solving
skills.

Week 6: Culminating
Project and Reflection

● Culminating
project where
students apply
their knowledge
and skills in
computing and
programming to
design and
implement a
final project.

● Presentations or
demonstrations
of projects to
peers, teachers,
or external
audiences.

● Reflection
activities to
review learning
outcomes,
assess
disposition
development,
and set goals for
future learning.

to understand their
effects.

● Embrace tinkering
as a means of
discovering new
possibilities and
gaining deeper
insights.

 Creativity:
● Think outside the

box and generate
novel solutions to
problems.

● Combine existing
ideas or techniques
in innovative ways
to create unique
outcomes.

● Embrace creativity
as an essential
aspect of
programming and
problem-solving.

 Accepting Challenges:
● Welcome challenges

as opportunities for
growth and
learning.

● Approach difficult
tasks with a positive
attitude and a
willingness to
persevere.

● View challenges as a
chance to push
boundaries and

Students will show
curiosity and a willingness
to experiment with
different programming
concepts, exploring
various features, settings,
and functionalities to gain
deeper insights.

Students will embrace
tinkering as a means of
discovering new
possibilities and refining
their programming skills.

Creativity:

Students will think
creatively to generate
novel solutions to
programming problems,
combining existing ideas or
techniques in innovative
ways to create unique
outcomes.
Students will recognize
and embrace creativity as
an essential aspect of
programming and
problem-solving.

Accepting Challenge:
Students will welcome
programming challenges
as opportunities for
growth and learning,

 expand one's
capabilities.

approaching difficult tasks
with a positive attitude
and a willingness to
persevere.

Programming Skills
(Continued)

● Iteration: Nested
Loops

● Conditional
Statements

● Randomization
● Functions

2-4 weeks ● 2-AP-10 Use
flowcharts
and/or
pseudocode to
address
complex
problems as
algorithms.
(P4.4, P4.1)

● 2-AP-11 Create
clearly named
variables that
represent
different data
types and
perform
operations on
their values.
(P5.1, P5.2)

● 2-AP-12 Design

and iteratively
develop
programs that
combine
control
structures,
including
nested loops

Nested Loops

Demonstrate the ability to
implement nested loops to iterate
through multidimensional data
structures effectively.

Utilize nested loops to solve
complex problems requiring
multiple levels of iteration, such as
matrix operations or nested
patterns.

Apply nested loops in algorithmic
solutions to real-world problems,
demonstrating efficiency and
elegance in code design.

Implement conditional statements
to create robust and adaptive
programs capable of responding
dynamically to varying inputs and
scenarios.
Skill in Randomization

Utilize randomization techniques to
introduce variability and
unpredictability in program

Outcomes:
Measurements

Mastery of Iteration:
Nested Loops

● Students will
demonstrate the
ability to
implement
nested loops
through a series
of coding
exercises and
projects.

● Performance
assessments will
include analyzing
and debugging
code that utilizes
nested loops to
iterate through
multidimensional
data structures.

● Students will
complete a
project where
they apply

TSA

and compound
conditionals.
(P5.1, P5.2)

● 2-AP-13

Decompose
problems and
subproblems
into parts to
facilitate the
design,
implementatio
n, and review
of programs.
(P3.2)

● 2-AP-14 Create

procedures
with
parameters to
organize code
and make it
easier to reuse.
(P4.1, P4.3)

● 2-AP-15 Seek

and
incorporate
feedback from
team members
and users to
refine a
solution that
meets user
needs. (P2.3,
P1.1)

behavior, enhancing user
experience and realism.

Apply random number generation
functions to simulate probabilistic
events or create randomized
elements in games and simulations.

Incorporate randomness judiciously,
ensuring that randomization serves
a purpose and enhances the
functionality or entertainment value
of the program.

Proficiency in Functions:
Define and implement functions to
encapsulate reusable code blocks,
promoting modularity and code
organization.

Design functions with clear input
parameters and return values,
adhering to principles of abstraction
and encapsulation.

Utilize functions to decompose
complex tasks into smaller,
manageable units, enhancing code
readability and maintainability.

nested loops to
solve complex
problems, such
as matrix
operations or
generating
nested patterns.

● Assessment
rubrics will
evaluate the
efficiency,
correctness, and
elegance of
students' nested
loop
implementations.

Proficiency in
Conditional Statements

● Students will
create programs
that utilize
conditional
statements to
respond
dynamically to
varying inputs
and scenarios.
Performance
assessments will
include coding
challenges where

● 2-AP-16

Incorporate
existing code,
media, and
libraries into
original
programs, and
give
attribution.
(P4.2, P5.2,
P7.3)

● 2-AP-17

Systematically
test and refine
programs using
a range of test
cases. (P6.1)

● 2-AP-18

Distribute tasks
and maintain a
project
timeline when
collaboratively
developing
computational
artifacts. (P2.2)

● 2-AP-19
Document
programs in
order to make
them easier to
follow, test,

students design
algorithms that
incorporate
conditional
statements to
handle different
cases.

● Students will
complete a
project where
they implement
conditional
statements to
create robust and
adaptive
programs.

● Assessment
rubrics will
evaluate the
effectiveness and
correctness of
students'
conditional
statements,
assessing their
ability to handle
various
conditions and
scenarios.

Skill in Randomization

and debug.
(P7.2)

● Computing
Systems

● 2-CS-01
Recommend
improvements
to the design of
computing
devices, based
on an analysis
of how users
interact with
the devices.

● 2-CS-02 Design
projects that
combine
hardware and
software
components to
collect and
exchange data

● 2-CS-03
Systematically
identify and fix
problems with
computing
devices and
their
components.

● Students will
demonstrate the
use of
randomization
techniques
through coding
exercises and
projects.

● Performance
assessments will
include analyzing
and modifying
code that utilizes
randomization
functions to
introduce
variability and
unpredictability.

● Students will
complete a
project where
they incorporate
randomization to
simulate
probabilistic
events or create
randomized
elements in
games or
simulations.

● Assessment
rubrics will
evaluate the

purposefulness
and effectiveness
of randomization
in enhancing
program
functionality and
user experience.

Proficiency in Functions

● Students will
define and
implement
functions through
coding exercises
and projects.

● Performance
assessments will
include analyzing
and debugging
code that utilizes
functions to
encapsulate
reusable code
blocks.

● Students will
complete a
project where
they design and
implement
functions to
decompose
complex tasks

into smaller,
manageable
units.

● Assessment
rubrics will
evaluate the
clarity of
students' function
definitions, the
effectiveness of
function usage,
and the
adherence to
principles of
modularity and
code
organization.

Computers and
Communication Devices

Describe the components
and functions of computer
systems and networks.

Apply strategies for
identifying and solving
routine problems that
occur during everyday
computer use.

2-4 weeks 2-NI-04
Model the role of
protocols in
transmitting data
across networks and
the Internet.

2-CS-01
Recommend
improvements to the
design of computing
devices, based on an
analysis of how users
interact with the
devices.

Competency:
Computers and Communication
Devices

Performance Indicators:

Describe the Components and
Functions of Computer Systems and
Networks:

Identify and describe the major
components of a computer system,
including the CPU, memory, storage
devices, input/output devices, and
peripherals.

Outcome: Describe the
Components and
Functions of Computer
Systems and Networks
Measurement:

Students will accurately
identify and describe the
major components of a
computer system,
including the CPU,
memory, storage
devices, input/output

TSA

2-CS-02
Design projects that
combine hardware and
software components
to collect and exchange
data.Design projects
that combine hardware
and software
components to collect
and exchange data.

Explain the function and role of
each component within the
computer system, highlighting their
interactions and contributions to
overall system functionality.

Apply Strategies for Identifying and
Solving Routine Problems in
Computer Use:

Develop systematic approaches for
identifying common issues that arise
during everyday computer use, such
as software glitches, connectivity
problems, or hardware
malfunctions.

Utilize troubleshooting techniques
to diagnose and isolate the root
causes of computer problems,
employing methods like trial and
error, process of elimination, and
systematic testing.

Apply critical thinking skills to
analyze symptoms, gather relevant
information, and implement
appropriate solutions to resolve
computer-related issues efficiently.
These performance indicators
assess students' competency in
understanding computer systems
and networks, as well as their ability
to identify and solve routine
problems encountered during

devices, and
peripherals.
Performance
assessments will include
quizzes, tests, or
presentations where
students demonstrate
their understanding of
computer system
components and their
roles.

Students will complete a
project or assignment
where they explain the
function and interaction
of each component
within a computer
system, highlighting their
contributions to overall
functionality.

Assessment rubrics will
evaluate the
completeness, accuracy,
and clarity of students'
descriptions of computer
system components and
functions.

Outcome: Apply
Strategies for Identifying
and Solving Routine

everyday computer use. By
mastering these essential skills,
students develop a foundational
understanding of computing devices
and gain practical problem-solving
abilities that are valuable in both
academic and real-world contexts.

Problems in Computer
Use

Measurement:
Students will develop
systematic approaches
for identifying and
solving common
problems encountered
during everyday
computer use.

Performance
assessments will include
scenarios or case
studies where students
apply troubleshooting
techniques to diagnose
and resolve
computer-related issues.

Students will
demonstrate critical
thinking skills by
analyzing symptoms,
gathering relevant
information, and
implementing
appropriate solutions to
solve computer
problems efficiently.

Assessment rubrics will
evaluate students' ability
to apply troubleshooting
techniques effectively,
analyze symptoms, and
implement solutions to
resolve computer
problems.

Community, global, and
ethical impacts

Use information and
technology responsibly
and ethically.

Analyze the effects of
computing on society
within economic, social,
and cultural contexts.

Describe the widespread
impact of the internet in
connecting people and
ideas from across the
world.

Use computing to
positively impact the
community.

3-4 weeks 2-IC-21
Discuss issues of bias
and accessibility in the
design of existing
technologies.

2-IC-22
Collaborate with many
contributors through
strategies such as
crowdsourcing or
surveys when creating
a computational
artifact.

2-IC-23
Describe tradeoffs
between allowing
information to be
public and keeping
information private
and secure.

Competency: Community, Global,
and Ethical Impacts of Computer
Science and IT (Level 3)

Performance Indicators:
Use Information and Technology
Responsibly and Ethically:

Demonstrate an understanding of
ethical considerations related to
information and technology use,
including issues such as privacy,
security, intellectual property rights,
and digital citizenship.

Apply ethical principles to decision-
making in various technology-
related contexts, making informed
choices that prioritize integrity,
honesty, and respect for others'
rights and interests.

Act responsibly in digital
environments, adhering to
established guidelines and protocols
for safe and ethical online behavior,

 TSA

and demonstrating awareness of
the potential consequences of
unethical actions.

Analyze the Effects of Computing on
Society within Economic, Social, and
Cultural Contexts:

Identify and analyze the economic,
social, and cultural impacts of
computing technologies on
individuals, communities, and
society at large.

Evaluate the role of technology in
shaping economic structures,
employment opportunities, social
interactions, and cultural practices,
considering both positive and
negative consequences.

Critically examine issues such as
digital divide, algorithmic bias, and
technological displacement, and
propose strategies for addressing or
mitigating their effects.

Describe the Widespread Impact of
the Internet in Connecting People
and Ideas from Across the World:
Explain the transformative role of
the Internet in facilitating global
communication, collaboration, and
information exchange.
Identify and describe various
internet technologies and platforms

that enable connections between
individuals, communities, and
organizations worldwide.

Explore examples of how the
internet has influenced cultural
exchange, political activism,
economic development, and other
aspects of global society.

Use Computing to Positively Impact
the Community:

Collaboration

● Work
cooperatively and
collaboratively
with peers,
teachers, experts,
and others.

● Engage in pair
programming, as
both driver and
navigator.

● Exhibit
dispositions
necessary for
collaboration:
providing useful
feedback,
integrating
feedback,

● understanding
and accepting

Entirety of course CSTA
2-IC-22

Competency: Collaboration in
Computer Science and IT (Level 3)

Performance Indicators:
Work Cooperatively and
Collaboratively with Peers,
Teachers, Experts, and Others:

Actively participate in group
projects, discussions, and activities,
demonstrating a willingness to
contribute ideas, share resources,
and collaborate with others.

Communicate effectively with team
members, teachers, and external
stakeholders, demonstrating active
listening skills, clear expression of
ideas, and respectful interaction.

Engage in Pair Programming, as
Both Driver and Navigator:

Outcome 1: Work
Cooperatively and
Collaboratively with
Peers, Teachers,
Experts, and Others

Measurement:

Students will actively
participate in group
projects, discussions,
and activities, as
evidenced by their
contributions, ideas
shared, and

TSA

multiple
perspectives, and
socialization.

Collaborate effectively in pair
programming activities, alternating
roles between the "driver" (writing
code) and the "navigator" (providing
guidance and feedback).

Demonstrate effective
communication and teamwork skills
while working as a pair, actively
discussing ideas, sharing insights,
and jointly solving programming
challenges.
Utilize pair programming as a
strategy to enhance learning,
promote code quality, and build
problem-solving skills through
shared exploration and dialogue.

Integrate Feedback:

Incorporate feedback received from
peers, teachers, and experts into
one's work, demonstrating flexibility
and adaptability in response to
suggestions and critiques.

Iterate projects and solutions based
on feedback, striving for continuous
improvement and refinement.
Understand and Accept Multiple
Perspectives:

Respect and value diverse
perspectives and ideas shared by
peers and collaborators, recognizing

collaboration with
others.

Performance
assessments will
include peer
evaluations and
teacher observations
of students'
communication and
collaboration skills
during group activities.

Students will complete
a group project where
they demonstrate
effective
communication,
resource-sharing, and
collaboration with
team members.

Assessment rubrics
will evaluate students'
willingness to
contribute ideas, share
resources, and engage
in respectful

the importance of diversity in
problem-solving and innovation.

interaction with peers
and collaborators.

Outcome: Engage in
Pair Programming, as
Both Driver and
Navigator

Measurement:

Students will
demonstrate effective
pair programming
skills through
collaborative coding
activities.

Performance
assessments will
include observations
of students' roles as
both driver (writing
code) and navigator
(providing guidance
and feedback) during
pair programming
sessions.

Students will complete
pair programming

exercises where they
actively discuss ideas,
share insights, and
jointly solve
programming
challenges with their
partner.

Assessment rubrics
will evaluate students'
communication,
teamwork, and
problem-solving skills
demonstrated during
pair programming
activities.

Outcome:: Integrate
Feedback

Measurement:

Students will
incorporate feedback
received from peers,
teachers, and experts
into their work.

Performance
assessments will

include analyses of
students' ability to
iterate projects and
solutions based on
feedback received.

Students will revise
and refine their
projects or solutions
based on feedback
provided by peers,
teachers, or external
stakeholders.

Assessment rubrics
will evaluate students'
flexibility and
adaptability in
responding to
feedback, as well as
the quality of their
revised work.

Outcome 4:
Understand and
Accept Multiple
Perspectives

Measurement:

Students will
demonstrate respect
for diverse
perspectives and
ideas shared by peers
and collaborators.

Performance
assessments will
include reflections on
students' recognition
of the importance of
diversity in problem-
solving and
innovation.

Students will engage
in discussions and
activities that promote
understanding and
acceptance of multiple
perspectives within
the context of
computer science and
IT.

Assessment rubrics
will evaluate students'
ability to respect and
value diverse

viewpoints, as well as
their contributions to
creating an inclusive
and collaborative
learning environment.

Careers in IT 2-4 weeks Identify various fields within IT fields
and their respective career
opportunities.
a. Recognize the work typically
performed, tools and technology
used, and nature of work
environment
b. Identify potential certification
opportunities
c. Find membership organizations
associated with the careers
d. Understand the necessary
education associated within the
careers
e. Research security clearance
requirements associated within the
careers

